If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2-11=0
a = 121; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·121·(-11)
Δ = 5324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5324}=\sqrt{484*11}=\sqrt{484}*\sqrt{11}=22\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{11}}{2*121}=\frac{0-22\sqrt{11}}{242} =-\frac{22\sqrt{11}}{242} =-\frac{\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{11}}{2*121}=\frac{0+22\sqrt{11}}{242} =\frac{22\sqrt{11}}{242} =\frac{\sqrt{11}}{11} $
| 5x+12+7x=96 | | 1a-16=7a-12 | | 6k-11=25 | | 10b-13=7 | | -1/6-4/5=-x | | Y^2+15y+56=(y+7)(y+ | | 30/j=29/39 | | 16=4Xx | | 5v-1=-36 | | 5m-m=m+3m | | 6h+10=4h-4 | | 8(u-9)=-64 | | X^+y^+8y-128=0 | | -1/6-4/5=x | | 3(j-65)=45 | | 16w+32=14.4 | | -10y+8=-72 | | t/0.6=0.12 | | -10+x2-101=10 | | 2g=10=6 | | x÷-6+6=24 | | 80=r-30 | | X+23=2x+19 | | -8=3w | | 25a=-45 | | -7y-3=10 | | 2(n-48)=24 | | 4y+10=y+27 | | 25+3xx=5 | | g2=49 | | g+13/5=4 | | -24+-7q=18 |